Nomenclature

English Symbols

A		parameter;
$a_{\rm B}$	[1]	activity of dissolved component B;
a_0	[1]	value of the limit of detection;
$\mathfrak{a}_{\mathrm{B}j}$	$=a_{j}^{z_{\mathrm{B}}/z_{j}}$	transformed activity;
b, B		parameters;
c°	$= 1 {}^{\mathrm{mol}}\!/_{\mathrm{L}}$	standard molarity;
$c_{\rm B}$	$[mol L^{-1}]$	molarity of dissolved component B;
С		sensitivity coefficient;
d	[m]	membrane thickness;
D	$[m^2 s^{-1}]$	diffusion coefficient;
E	[V]	cell potential (emf);
$E^{(\rm NE)}$	[V]	cell potential calculated using the NE model;
$E^{(\text{PBP})}$	[V]	cell potential calculated using the PBP model;
E^0	ĪVĪ	cell constant;
$E_{\rm Ref}^0$	ĪVĪ	standard potential of electrode;
$E_{\rm Bound}$	ĪVĪ	interfacial potential difference;
$E_{\rm D}$	ĪVĪ	diffusion potential;
$E_{\rm LJ}$	ĪVĪ	liquid-junction potential;
$E_{\rm M}$	ĪVĪ	membrane potential on the ISE;
${\mathcal E}$	$[Vm^{-1}]$	electric field;
F	$= 9.64845 \cdot 10^4 \text{C/mol}$	Faraday equivalent;
f(), F()		functions;
I_c	$[mol L^{-1}]$	ionic strength based on molarity;
I_m	$\left[\text{mol kg}^{-1} \right]$	ionic strength based on molality;
J_i	$[m^{-2} s^{-1}]$	flux of i th ion;
$k_{\rm B}$	[1]	distribution constant;
k	[1]	coverage factor;
K	[1]	thermodynamic selectivity coefficient;
K^{Pot}	[1]	potentiometric selectivity coefficient;
$K_{i\mathrm{T}}$	[1]	total distribution coefficient;
$K_{\rm T}$	[1]	total concentration of anionic sites in a membrane;
m°	$= 1 {\rm mol/kg}$	standard molality;
$m_{\rm B}$	$[mol kg^{-1}]$	molality of dissolved component B
m	[1]	number of measuring points;
$M_{\rm B}$	[kg/mol]	molar mass of component B
n	[1]	number of statically independent observations;
n	[1]	number of ions in the solution;
N	$[mol L^{-1}]$	normality;
N	[1]	total number of elements in population;
\mathcal{N}	[1]	mole fraction;
lg	$= \log_{10}$	common logarithm — logarithm to the base $10;$
ln	$= \log_e$	natural logarithm — logarithm to the base e;

[1]	amount-of-substance B;
[1]	level of confidence (coverage probability);
[1]	number of ISEs;
	variable;
[1]	purity;
	parts per million;
$= -\lg a_{\mathrm{H}} [1]$	concentration measure of hydrogen ions;
$= -\lg a_{\mathrm{X}}$ [1]	concentration measure of ions other then hydrogen ones;
	variables;
[m]	position;
$= 8.31432 \text{J}_{\text{K mol}}$	gas constant;
$= \frac{\mathrm{R}T}{\mathrm{F}}$	parameter in Eq. (18);
	estimate of parameter σ , experimental standard deviation;
	experimental variance;
[V]	Nernstian slope;
$= \frac{S_{\rm B}}{2.303}$	a factor, corresponding to the Nernstian slope, in means
,	of definition using the natural logarithm;
	transfer number of ion i ;
[1]	time;
[K]	absolute temperature;
$[m^2 V^{-1} s^{-1}]$	mobility of <i>i</i> th ion;
	standard uncertainty;
	expanded uncertainty;
$[m s^{-1}]$	flow velocity;
$[m^3]$	total volume of solution;
	relative uncertainty;
[1]	weight coefficient;
	variable;
_	variable;
[1]	charge number of ion B (positive or negative number).
	$ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \\ \begin{bmatrix} 1 \\ - \\ - \\ - \\ 1 \end{bmatrix} \\ = - \lg a_{\rm X} \begin{bmatrix} 1 \\ - \\ 1 \end{bmatrix} \\ = 8.314 \ 32^{\rm J}_{\rm K mol} \\ = {}^{\rm RT}_{\rm F} \\ \\ \\ = {}^{\rm SB}_{\rm J}_{2.303} \\ \begin{bmatrix} 1 \\ M \\ M^2 \ V^{-1} \ S^{-1} \end{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $

Greek Symbols

α	[1]	ratio of free to total species concentration;
γ	[1]	molal activity coefficient;
γ_{\pm}	[1]	mean activity coefficient;
γ^c	[1]	molar activity coefficient;
$\gamma^{\mathcal{N}}$	[1]	fractional activity coefficient;
Δx		error of measurement of quantity x ;
ε	$[F m^{-1} = kg^{-1}m^{-3}s^4A^2]$	dielectric constant (permittivity);
ε_0	$= 8.8541^{\text{F}}/_{\text{m}}$	permittivity of free-space;
$oldsymbol{\mu}_i$	$[\mathrm{J}\mathrm{mol}^{-1}]$	chemical potential;
μ^{o}	$[\mathrm{J}\mathrm{mol}^{-1}]$	standard chemical potential;
$ ilde{oldsymbol{\mu}}_i$	$[\mathrm{J}\mathrm{mol}^{-1}]$	electrochemical potential;
μ		mean (result from an infinite number of measurements);
ν	[1]	stoichiometry number;
Q	$[\mathrm{kg}\mathrm{m}^{-3}]$	density of solution;
ρ	$[\mathrm{C}\mathrm{m}^{-3}]$	charge density;
σ		standard deviation;
σ^2		variance;
$\phi()$	[V]	average electrostatic potential;
ϕ	[m]	mean effective diameter of the hydrated ions;

 Φ

[1]

dimensionless electrical potential function.

Sub- and Superscripts

Π', Π"	at the membrane in the bulk and in the inner solution;
Ū	arithmetic mean;
Õ	median;
$\Box(0),\Box(d)$	in the membrane at the bulk and at the inner solution;
\square_+, \square	cations and anions;
□*	for a pure solution;
	for a mixture;
D [◆]	arising from other components;
\Box_a	anion;
\Box_c	cation;
$\Box_{\rm c}$	combined;
\Box_i, \Box_j	indexes;
$\square_{\!i_1}\square_{\!i_2}\square_{\!i_3}$	uni-, di- and trivalent species;
\square_M	cation of interest;
\Box_n	neutral molecule;
\square_X	anion of interest;
\Box_r	relative.

Acronyms and Abbreviations

ANN	artificial neural network
DH	Debye–Hückel
emf	electromotive force
GUM	Guide to the Expression of Uncertainty in Measurement
ISE	ion-selective electrode
ISO	International Organization for Standardization
IUPAC	International Union of Pure and Applied Chemistry
LOD	limit of detection
MSA	mean spherical approximation
NE	Nikolsky–Eisenman
PBP	phase-boundary potential
PVC	polyvinyl chloride
SHE	standard hydrogen electrode
VIM	International Vocabulary of Basic and General Terms in Metrology

Definitions

- **measuring point** a set of activities and corresponding to them potential of the ISE (p. 65).
- stretch factor a number by which spans of randomized ISE's parameters are multiplied before starting simulations while the arrangement of measuring points keep the same (p. 73).